"Strengthening Connections with the Audience: Reformation and Exemplification in Mathematics Research Articles"
Kristy LesperanceKristy was in her third year of undergraduate studies at the University of British Columbia when this essay was originally written, studying Mathematics under the faculty of Arts. The paper was written for an upper-level, intensive research and scholarly writing course using corpus analysis to investigate discursive features of literature from the student’s chosen major. Contents |
Works CitedBauer, M. W., & Aarts, B. (2000). Corpus construction: A principle for qualitative data collection. In M. W. Bauer & G. Gaskell (Eds.), Qualitative Researching with Text, Image and Sound: A Practical Handbook (pp. 19-37). London: Sage. Becher, T. (1994). The significance of disciplinary differences. Studies in Higher Education, 19(2), 151-161. Biglan, A. (1973). Relationships between subject matter characteristics and the structure and output of university departments. Journal of Applied Psychology, 57(3), 204-213. Charles, M. (2009). Stance, interaction and the rhetorical patterns of restrictive adverbs: Discourse roles of only, just, simply and merely. In Charles, M., Pecorari, D., & Hunston, S. (Eds.), Academic writing: At the interface of corpus and discourse (pp. 152-169). London, GBR: Continuum International Publishing. Retrieved from http://www.ebrary.com Cuenca, M. J. & Bach, C. (2007). Contrasting the form and use of reformulation markers. Discourse Studies, 9(2), 149-175. doi: 10.1177/1461445607075347 Graves, H., Moghaddasi, S., & Hashim, A. (2013). Mathematics is the method: Exploring the macro-organizational structure of research articles in mathematics. Discourse Studies, 15(4), 421-438. doi: 10.1177/1461445613482430 Hyland, K. (2007). Applying a gloss: Exemplifying and reformulating in academic discourse. Applied Linguistics, 28(2), 266-285. doi: 10.1093/applin/amm011 Hyland, K. (2009). Writing in the disciplines: Research evidence for specificity. Taiwan International ESP Journal, 1(1), 5-22. Lillis, T. (2008). Ethnography as method, methodology, and “deep theorizing”: Closing the gap between text and context in academic writing research. Written Communication, 25(3), 353-388. doi:10.1177/0741088308319229 Paltridge, B. (2008). Textographies and the researching and teaching of writing. Ibérica, 15, 9-24. SCImago. (2007). SJR – SCImago Journal & Country Rank. Retrieved January 31, 2015, from http://www.scimagojr.com Swales, J. M. (1998). Textography: Toward a contextualization of written academic discourse. Research on Language and Social Interaction, 31(1), 109-121. doi:10.1207/s15327973rlsi3101_7 Van Dijk, T. A. (2006). Discourse, context and cognition. Discourse Studies, (8)1, 159-177. doi:10.1177/1461445606059565 Corpus Materials Theoretical and applied research articles Bryant, R. & Harvey, R. (1989). Submanifolds in geometry. Journal of the American Mathematical Society, 2(1), 1-31. Burq, N. & Zworski, M. (2004). Geometric control in the presence of a black box. Journal of the American Mathematical Society, 17(2), 443-471. Cortés, J. & Bullo, F. (2009). Nonsmooth coordination and geometric optimization via distributed dynamical systems. SIAM Review, 51(1), 163-189. doi:10.1137/080737551 Ecker, J. G. (1980). Geometric programming: Methods, computations and applications. SIAM Review, 22(3), 338-362. Ein, L. & Lazarsfeld, R. (1997). Singularities of theta divisors and the birational geometry of irregular varieties. Journal of the American Mathematical Society, 10(1), 243-258. Estabrook, F. B. & Wahlquist, H. D. (1975). The geometric approach to sets of ordinary differential equations and Hamiltonian dynamics. SIAM Review, 17(2), 201-220. Frenkel, E., Gaitsgory, D., Kazhdan, D., & Vilonen, K. (1998). Geometric realization of Whittaker functions and the Langlands conjecture. Journal of the American Mathematical Society, 11(2), 451-484. Ivancevic, V. (2004). Symplectic rotational geometry in human biomechanics. SIAM Review, 46(3), 455-474. doi: 10.1137/S003614450341313X Jeffrey, M. R. & Hogan, S. J. (2011). The geometry of generic sliding bifurcations. SIAM Review, 53(3), 505-525. doi:10.1137/090764608 Lebrun, C. (1992). Twistors, Kähler manifolds, and bimeromorphic geometry 1. Journal of the American Mathematical Society, 5(2), 289-316. Monod, N. (2006). Superrigidity for irreducible lattices and geometric splitting. Journal of the American Mathematical Society, 19(4), 781-814. Okounkov, A. & Reshetikhin, N. (2003). Correlation function of Schur process with application to local geometry of a random 3-dimensional Young diagram. Journal of the American Mathematical Society, 16(3), 581-603. Pavon, M. & Ferrante, A. (2013). On the geometry of maximum entropy problems. SIAM Review, 55(3), 415-439. doi:10.1137/120862843 Schmidt, B. (1999). Cyclotomic integers and finite geometry. Journal of the American Mathematical Society, 12(4), 929-952. Sleator, D., Tarjan, R. E., & Thurston, W. P. (1988). Rotation distance, triangulations, and hyperbolic geometry. Journal of the American Mathematical Society, 1(3), 647-681. Thaddeus, M. (1996). Geometric invariant theory and flips. Journal of the American Mathematical Society, 9(3), 691-723. Viterbo, C. (2000). Metric and isoperimetric problems in symplectic geometry. Journal of the American Mathematical Society, 13(2), 411-431. Mathematics education research articles Biza, I., Christou, C., & Zachariades, T. (2008). Student perspectives on the relationship between a curve and its tangent in the transition from Euclidean geometry to analysis. Research in Mathematics Education, 10(1), 53-70. doi:10.1080/14794800801916457 Burger, W. F. & Shaughnessy, J. M. (1986). Characterizing the van Hiele levels of development in geometry. Journal for Research in Mathematics Education, 17(1), 31-48. Edwards, L. D. (1991). Children’s learning in a computer microworld for transformation geometry. Journal for Research in Mathematics Education, 22(2), 122-137. Herbst, P. G. (2006). Teaching geometry with problems: Negotiating instructional situations and mathematical tasks. Journal for Research in Mathematics Education, 37(4), 313-347. Hollebrands, K. F. (2007). The role of a dynamic software program for geometry in the strategies high school mathematics students employ. Journal for Research in Mathematics Education, 38(2), 164-192. Hollebrands, K. F., Conner, A, & Smith, R. C. (2010). The nature of arguments provided by college geometry students with access to technology while solving problems. Journal for Research in Mathematics Education, 41(4), 324-350. Lawson, M. J. & Chinnappan, M. (2000). Knowledge connectedness in geometry problem solving. Journal for Research in Mathematics Education, 31(1), 26-43. Mariotti, M. A. (2012). Proof and proving in the classroom: Dynamic geometry systems as tools of semiotic mediation. Research in Mathematics Education, 14(2), 163-185. doi:10.1080/14794802.2012.694282 Psycharis, G. & Kynigos, C. (2009). Normalising geometrical figures: Dynamic manipulation and construction of meanings for ratio and proportion. Research in Mathematics Education, 11(2), 149-166. doi:10.1080/14794800903063349 Sinclair, N. & Yurita, V. (2008). To be or to become: How dynamic geometry changes discourse. Research in Mathematics Education, 10(2), 135-150. doi:10.1080/14794800802233670 Swafford, J. O., Jones, G. A., & Thornton, C. A. (1997). Increased knowledge in geometry and instructional practice. Journal for Research in Mathematics Education, 28(4), 467-483. Wang, S. & Kinzel, M. (2014). How do they know it is a parallelogram? Analysing geometric discourse at van Hiele level 3. Research in Mathematics Education, 16(3), 288-305. doi:10.1080/14794802.2014.933711 |